16 Şubat 2014 Pazar

DEMİR

XIX. Yüzyılın başlarına kadar gözler hep Roma ile Yunan'daydı. Çağdaş uygarlığımız yalnız bu iki kaynağa indirgenmekteydi. Bu görüş Napolyon'un Mısır seferiyle değişti. Onunla birlikte Mısır'a giden bilginler, icat ve anıttan yana zengin bu iki uygarlıktan, çok daha eski bir uygarlığın varlığını şaşkınlık ve hayranlıkla gördüler. 1842'de ufuk daha da genişledi; Fransa'nın Musul başkonsolosu Botta, Mezopotamya'nın antik anıtlarını ortaya çıkardı. Bunu, öteki uygarlıkların, (Sümerler, Babilliler, Egeliler, Hititliler, Ukrayna'dan Moğolistan'a uzayan steplerde yaşayan göçebe halk) tanınması ve incelenmesi izledi.

Bugün Atina ve Roma gözümüzde parlak olmakla birlikte uygarlık tarihinin bir ayrıntısından başka bir şey değildir. Birçok belli başlı teknik icatları artık onlara mal edemeyiz. Biliyoruz ki bunlar. Roma saltanatının ya da Yunanistan'ın ünlü filozoflarının gölgesinde değil, zaman zaman büyük imparatorluklar kurmakla birlikte sonradan unutulmuş Asyalı toplumların eserleridir. Yukarıda sabanın, koşumun, gemin bu halkaların icatları olduklarını görmüştük. Ama tereyağının İşkillerin icadı, demirin de (M.Ö. 1300'de) Mitillerin icadı olduğunu kaçımız biliriz?

Demir madeni daha önceden de biliniyordu; Hititlere borçlu olduğumuz, "demir sanayii"dir. M.Ö. 2950'de Ur'da bir demir balta; M.Ö. 2840-M.Ö. 2700'den gelen Sümer kalıntıları arasında ve Keops Piramidi'nde demir silâhlar bulunmuştur. Ancak o zamanlar, son derece az bulunan bir maden olduğundan demir değerli eşyalardan sayılıyordu. Hammurabi zamanında (M.Ö.2000) Babil'de demirin değeri gümüşünkinden sekiz kat fazla ve altının dörtle üçü oranındaydı. Günümüz de bol rastlanan bu madenin o zamanlarda bunca 'ender oluşu'nun sebebi neydi acaba?

Çünkü demirin elde edilmesi bakır ya da tunçunkinden daha güçtü. Bakırı eritmek ve toprağından ayırmak için 1.083 derece ısı yeterlidir. Tuncun yapımında kullanılan kalaysa daha kolay (232 derecede) erir. Demirin eritilmesi için 1.535 derecilik bir ısı gereklidir. Bundan başka, maden cevheri oksit şeklinde olduğundan, bunu oksijenden ayırmak için çok miktarda redüktör'e yani indirgeme işlemini yapacak bir aracıya, özellikle karbona ihtiyaç vardır, işte bu iki şart, bakır ve tunç metalürjisinde (madenleri ve arıtılmalarını inceleyen bilim.) kullanılan fırınlarla gerçekleştirilemiyordu. Bunu, M.Ö. 1700'de yapılmış bir Mısır resminde gördüğümüz, ayakla işleyen körüklerle yapmak ve gerekli miktarda oksijeni maden cevherinden alacak maddeyi sağlamak imkânsızdı.

Demiri herkesin kullandığı bir maden haline getirenler, Hititler oldular. Bunun için de yüksek fırınlardan yaralandıkları kuşku götürmez. Böylece, tunçtan yapılmış ağır silahlar, zırhlar ve kalkanlar, yerlerini demirden olanlara bıraktılar. Arkeologlar, Korsabad'daki II. Sargon'un sarayında bu silahlardan ve araçlardan 160 ton bulmuşlardır.

Demir, Yakın Doğu'dan Mısır'a ve Dorların yaşadığı Balkanlara doğru hızla yayıldı. M.Ö. 900 yıllarına doğru Avrupa'da görülmeye başlanan bu madeni Avrupalılara tanıtan her halde Dorlar olmuşlardı. Doğu Asya, demiri aynı çağlarda benimsedi. Delhi'de, M.Ö. IV. yüzyıldan kalma 17 metre yüksekliğinde ve 17 ton ağırlığında büyük bir sütun bulunmaktadır. Vierendeel: "Bugün bile değme atölyelerin gözünü korkutacak böylesine dev gibi bir parçanın imalinde kullanılan madeni Hindular nasıl eritmiş ve nasıl çalışabilmişlerdir, insan şaşıyor," diyor.

Tabii demir önce yalnızca askerlikte kullanıldı. Ağır tunç kılıçlar, demirden yapılmış ince, hafif ve uzun kılıçların karşısında 'âciz' kalıyordu, öte yandan mızrak, ok ve yay daha kullanışlı biçimde yapılmaya başlandı. Gem ve mahmuz hafifledi. Bunu ev eşyaları ve günlük hayatla kullanılan öteki araçlar izledi. Bıçak, testere, zincir vb. demircilerin atölyesinden çıkmaya başladı. Bu arada makas da icat edildi. Önceleri makas sadece savaşçıların saç ve bıyıklarını kesmekte kullanılıyordu. Bir süre sonra mücevherler de demirden imal edilmeye başlandı.

Demirin gelişmesini izlemek, çok öğreticidir. Yakın Doğulu bir halkın zekâsının ürünü olan bu maden Asurlulara< kan dökücü egemenliklerini bütün Yakın Doğu'ya yaymaları imkânını vermiştir. II. Sargon, Assurbanipal gibi kralların ün kazandığı bu imparatorluk, kendi içinde eriyen Sümer, Mısır ve Babil gibi eski uygarlıkların mirasçısıydı. Asya'nın bu dev temsilcisi karşısında, Avrupa'nın ne önemi olurdu?.. Sadece Yunan dünyasının meydana getirdiği küçük bir ışıklı nokta dışında. Güneybatı Almanya'dan göç etmiş tarımcı bir halkın Keltlerin, birkaç yüzyıldan beri içinde yaşadıkları karanlık, sessiz ve kısır bir dünya, Kelt köylerinin yoksul kulübeleri,. Babil'in, Knosos'un Ninova'nın sanat eserlerinden ve banyolu konutlarından çok uzaklardaydı. Ve Avrupa'nın günün birinde bunları aşacağı, o dönem için aklın hayalin almayacağı bir şeydi.

Bununla birlikte M.Ö. 612'de heybetli Asur yapısı çöktü; Ninova, ateşler içinde yok olup gitti. Yıkıntılarından başka bir imparatorluk yükseldi: Pers İmparatorluğu. Sınırları daha da genişleyen bu devlet, Akdeniz'e kadar uzandığı Hellen kıvılcımı, Batı'nın yoğun karanlığında henüz pek güçsüz bir ışıktı.

DEMİR VE DÖKME DEMİRİN ZAFERİ

Bu önemli gelişmenin öncüsü, "çelik sanayinin babası" diye adlandırılan John Wilkinson'dur (1782-1808). Madencilik, araçlarını ve tekniklerinin birçoğunu ona borçludur. Hadde makinesini 1552'de Nurenberg'de Bruler adlı biri icat etmiş; iki yüzyıl sonra Fransız Chapitet, madeni oluklu iki silindirin arasından geçirerek "profil" (U,T ya da köşeli vb.) demir imal etmişti. Wilkinson, bunun kullanma alanını o derece genişletti ki, XIX. yüzyılın eşiğinde mimarlar, mühendisler ve makine yapımcıları her türlü ihtiyaca uygun boy ve biçimde madeni levha bulabiliyorlardı.

Wilkinson 1774'te boru biçimindeki madeni eşyaların içini "perdahlama' ve bir de 'delme' makinesi icat etti. O tarihe kadar Fransız Nicolas Focg'un icadı olan (1750) 'delici'den geliştirilmiş bir araç kullanılıyordu. Wilkinson bu aracı mükemmelleştirerek top namlularına uyguladı. Onun sayesinde yepyeni bir 'araç-makine ailesi' türedi. Bu aile yetenekli iki teknisyenin (İngiliz Joseph Bramah (1749-1814) ve Fransız Marc Brunel (1769-1849) çalışmalarıyla daha da gelişti. İkisi de tarımcı çocuklarıydı; mutlu bir rastlantıyla sanayi alanına atılmışlardı.

Bramah bir yığın icatlar ortaya attı (sözgelişi, bira tulumbası). Ama, asıl ona büyük ün sağlayan "hidrolik pres" (1796) oldu. Brunel, "delgi makinesi", "yuva açma makinesi" ve "perdahlama makinesi" yaptı. Bundan başka Liverpool'da rıhtımlar ve doklar, Londra'da Thames’ın altına bir tünel inşa etti. (1824-1842). Henry Bramah’nın hidrolik presinin işlerken kuru kalmasını sağlayan, eski öğrencisi Maudslay'in (1771-1831) pistonları deriyle kaplaması oldu.

XVIII. yüzyılın sonlarında mühendisler bu tür araçlara sahip olduktan sonra odunu bir yana itip yerine maden kullanmaya başladılar. Maden zaten buhar makinesi için zorunluydu. Araçlar, sonra da en çeşitli mekanizmalar madenden yapılmaya başlandı. XVIII. yüzyılın sonundan on yıl kadar önce. Mühendis John Rennie'nin (1761-1821) yaptığı, dişli çarklılara kadar bütün aksamı madenden olan ilk buharlı değirmen İngiltere'de dönmeye başladı.

Bununla birlikte yapımcılar, kalıba dökmeye son derece uygun olan dökme demiri birçok alanlarda tercih ediyorlardı. XVIII. yüzyılın ortalarından başlayarak İngilizler, dökme demirden çok çeşitli dökme eşyalar yaptılar: 1738'de ray, 1755'te vagon tekerleği, hidrolik çarklar ve kazanlar... 1773'te teknik, madenden bir köprü yapmaya karar verilmesiyle bir atılım daha yaptı.

Köprü yapımcıları bundan önce de maden köprü inşa etmek hevesine kapılmışlar, 1755'te Lyon'da üç kemerli bir köprü yapmaya kalkışmışlardı. Ama bu tasarı zamana göre aşırı ileriydi. 1773'te İngiltere artık bu iş için olgunlaşmıştı. Darbylerin fabrikaları, yakınlarında bulunan Severn ırmağının üstüne ilk "demir köprü"yü attı. 1779'da trafiğe açılan ve hâlâ sapasağlam duran bu köprü, zamanında bir şaheser olarak karşılanmış, yapımcısı Abraham III. Darby "mühendislik ve mimarlık sanatına yeni ufuklar getiren öncü" olarak kutlanmıştı.

Dökme demir köprüler birbirini izledi: 1796'da Sunderland'da 1804'te Paris'te (le pont des arts) 1806'da yine Paris'te (le pont d'Austerlitz) Bu başarılar tutkuları kamçılayınca, dökme demirle büyük binalar inşa etmeyi deneme hevesi baş gösterdi. Fransız mühendisi François Joseph Belanger (1744-1818), Paris'te 1811'de buğday halini 40 metrelik, dökme demir kubbeyle kapatmayı başardı. Dökme demir doruğuna ulaştığı yerde, demir ve hemen ardından çelik onu geçmeye hazırdılar. 1787'de Wilkinson ilk demir gemiyi kızağa koyar, 1796'da Amerikalı Finley ilk asma köprüyü tanıtırken, mimarlar da demiri, yapılarda gizli kalan 'iskelet' olmaktan çıkarıp 'dekoratif (süsleyici) unsur olarak kullanmayı düşünüyorlardı.

Köprüler, gemiler, araç-makineler, kubbeler gibi yararlı teknik uygulamalara rağmen, XVIII. yüzyılın sonunda madenin başlıca kullanıldığı yer hâlâ savaş sanayisiydi. Silah imalâtçılarıyla top dökümcülerinin sanayide yerleri kamu işleri mühendislerinden önce geliyordu. Fransız Devrimi'nin Avrupa'yı karşı karşıya getireceği bütün büyük çarpışmalarda demir, madenlerin kralı oldu. Ordunun ihtiyaçları nedeniyle de olağanüstü gelişimini sürdürdü.

Çelik alanında tüfek, Vauban'dan bu yana değişmemişti. Fransızlar, Devrim ve İmparatorluk savaşlarını 1777'de kullanılan silahlarla sürdürmekteydiler. Bunlar, hâlâ ağızdan döktürülüyorlardı.

Tüfeğe karşılık, top yapımı ilerleme kaydetmişti. Gösterdiği balistik (atış uzaklığı) sorunlardan ötürü matematikçilerin dikkatini çekmiş, bu sayede sağlam bilimsel temellere kavuşmuştu. İngiliz Benjamin Robins (1701-1751), mermilerin silahtan çıkış hızını ölçmek için bir "balistik sarkaç" icat etmiş ve "iç balistiğin" temellerini atmıştı. İsviçreli Johann Sulzer (1720-1779) da, 1755'te havanın direnci üzerine ilk deneyleri yaparak "dış balistiğin" esaslarını buldu. Bu direncin 1781'de matematik kanununu koyan, Prusyalı Georg von Tempelhof (1737-1807) ve İngiliz Charles Hutton'dur (1733-1824).

Bu kuramlarla kişisel gözlemlerin gösterdiği yoldan ilerleyen Fransız Jean-Baptiste de Gribeauval (1715-1789), yarım yüzyıl boyunca Avrupa savaş alanlarında gürleyecek olan maddeyi buldu. Ondan önce top hâlâ tunçtan yapılıyor, ama önce dolu dökülüyor, sonra delinip perdahlanıyordu. Namlu dibi kapalı olduğundan gülleler hartuçla atılıyor, nişan da nişan çizgisi' ve 'nişangâh'la alınıyordu.

Aracın, 'sefer topu' ve 'kuşatma topu' olarak ikiye ayrılması, parçaların uzatılması ve kısaltılmasının yanısıra getirilen tek yenilik standardizasyonuydu. Araçların bölümlerinin aynı ölçüler üzerine imal edilmesi kolayca parça değiştirilmesini sağlıyordu, İngiliz Henry Shrapnel'in (1761-1842) icat ettiği 'obüs,' topu daha öldürücü bir araç haline getirdi. İspanya seferinde bu silâhla ilk karşılaşan Napolyon orduları büyük kayıplar verdiler.

DAKTİLO

Daktilo, 19. yüzyılda Amerika'da bulundu. Daktilonun ilk örneklerine "tipograf" adı verilmişti. Tipograf 1829 yılında William Burt tarafından yapılmıştı. Bu makinenin birçok parçası tahtadandı. Harfleri bulabilmek için, yazı yazanın bir çerçeve üzerindeki kolu çevirmesi gerekiyordu. 1868 yıllarına doğru daha gelişmiş modeller yapıldı. İlk daktilo makinesini satın alanlar arasında yazar Mark Twain de vardı.

ÇÖMLEKÇİLİK VE MADENLER

Tarih öncesi toplumlarının gücünü sağlayan sanayilerden biri olan çömlekçiliğin gelişmesi de tekerlek sayesinde olmuştur.

Daha önce söylediğimiz gibi, seramik. Cilâlı Taş Çağı'nda biliniyordu. 'Bu insanların killi toprağa elle biçim vererek meydana getirdikleri çanak-çömlekler, bugün arkeologlara, kazıların tarihlerini tespit etme imkânını vermektedir. Çömlekçi, hammaddesine elleriyle istediği biçimi verdikten sonra, bunu güneşte pişirirdi. Pişirme işlemini ateşte yapmayı ve iklim şartlarının etkisinden kurtarmak için kapalı yerde pişirmeyi, neden sonra düşünebildi. Böylece ilkel fırın doğmuş oluyordu.

İlk sanayinin eserleri kısa sürede Yakın Doğu'yu sardı; bunlar, boyalı desenlerle süslü Mezopotamya çanak-çömlekleri, çok güzel şekiller verilmiş ve üstleri mavi . yeşil sırla kaplı Mısır vazolarıdır. Ortak yönleri, her ikisinin de çok gözenekli olmalarıdır; ancak bunun pek sakıncası olmasa gerekti, çünkü bu kaplar sıvı değil, tahıl ve tohum koymaya yarıyordu Sümerler iki küpü birleştirerek, tabut olarak kullanmaktaydılar.

Günün birinde 'aklı evvel' bir zanaatçı, imal ettiği vazolara daha düzgün yuvarlak biçim verebilmek için dönen bir tepsi kullanmanın yerinde olacağını düşündü. Bu buluş, hangi tarihe rastlar? Tekerleğin icadından hemen sonraya diyebiliriz; çünkü, dönme'nin izlerine M.Ö 4.000 yıllarından kalma vazolarda bile rastlanmaktadır. Bu dönen tepsinin, başlangıçta zanaatçının elle çevirdiği tahta bir tekerlek olduğu kesinlikle kabul edilebilir Aynı eksene monte edilmiş, ayakla çevrilen bir "düzenteker" (Makinelerde devinim hızını düzgün tutmaya yarayan büyük çaplı çark.) biçimindeki tezgâh daha sonra bulunmuştur. Öte yandan birkaç taşla inşa edilmekte olan derme çatma ocaklar da yavaş yavaş gelişmiş; bacalı ve tuğladan yapılma fırınlar ortaya çıkmaya başlamıştır.

Bugün Louvre Müzesinin ve British Museum'un Eski Sanatlar Bölümlerinin vitrinlerini dolduran sayısız çanak-.çömlekler, işte böyle doğdu. Buralarda şimdi, mavi sırlı Mısır fayanslarını, Perslerden kalma Sus şehrinde imal edilmiş renk renk panoları, İndüs'ün pembe çanaklarını. Kuzeydoğu Çin yapısı siyah hamurdan üç ayaklı vazoları ve inanılmaz zariflikte Girit vazolarını hayranlıkla seyrediyoruz. Aynı çağlarda Sarı Irmak boylarındaki Çinliler yeni bir hamur denemekteydiler. Bunu Kaolin'den (beyaz kil) elde ediyorlardı. Böylece, tertemiz bir işçilik ve eşsiz bir zarifliğe imkân veren "porselen" icat edilmiş oldu.

Bu çeşitli sanayilerin köşelerinde, kendi hallerinde geliştiklerini düşünmek, büyük bir hata olur. Mısır'ı, Ege adalarını, Mezopotamya'yı, Bülücistan'ı, İndüs vadisini ve hatta Sarı Irmak'ı kapsayan geniş bir ticaretin var olduğunu düşünmemiz gerekir. Bu insanlar, gerek eşek, sonrada deve kervanlarıyla, gerekse akarsuların akışlarına uyarak, deniz kıyılarını izleyerek durmadan yolculuk ederlerdi. Yükleri de ,özellikle seramik eşyaydı. Buna tohum, parfüm, deri, kumaş, sanat eşyaları, mermer, fildişi ve hızla gelişmekte olan madenciliğin yarattığı yeni ihtiyaç maddeleri de eklenirdi.

M.Ö. 3.000 yılından başlayarak Giritliler, Mezopotamyalılar ve Mısırlılar hızla bakırın yerini almakta olan tuncu bol miktarda imal edebilmekteydiler. Yüzde 90 bakır ve yüzde 10 kalay karışımıyla elde edilen bu maden, yepyeni bir sanayinin hammaddesi olmuştu. Dökümcüler, madeni kalıplamadan önce, kalıba bir 'çekirdek' koyarak delik meydana getirmeyi biliyorlardı. Delik sayesinde mızrak, kılıç ve balta gibi araçlara tahta saplar geçiriliyordu. Bu silahlar, tahtanın madene perçin çivisiyle çakılmasıyla de imal edilmekteydi.

Bundan başka "halk sınıfları" için tunçtan süs eşyası da yapılıyordu, öyle ki, bu maden, kuyumculukta da önemli bir yer tutmaktaydı. Tunçtan küpe, yüzük, kolye, bilezik, taç gibi eşyalar Mısır ve 'Mezopotamya'da özellikle aranan ticari mallardı. Louristan'daki kazılardan çıkarılan birçok kalıntılar, bu çeşit süslerin zırhlara, silahlara, atların üzengilerine ve gemlerine kadar yayıldığını göstermektedir.

Bununla birlikte, önemli kişiler bu 'değersiz' madene pek. 'itibar' etmemekte; pahalı süsleri tercih etmekteydiler. M.Ö. 3.000 yıllarında altının bilindiği bir gerçektir. Akarsularda saf olarak bulunabilen bu maden, parlaklığı, rengi ve işleme kolaylığı gibi niteliklerinden ötürü hemen kuyumculuğun en çok aranan maddesi haline gelivermişti. Çağımızdan beş bin yıl önce altın, Sümerlerde, bugün bizde olduğundan daha bol ve yaygındı. Gerçekten de bugün altın süs eşyasını Güney Amerikalı birkaç zenginden ya da bazı zenci boksörlerden başka, bir Ur kralcığı kadar kim takıp takıştırabilir?

1927'de Ur'da bir kral mezarı ortaya çıkaran Wooley'in, gördüğü manzara karşısında neden şaşkınlığa düştüğünü gözünüzde canlandırabilirsiniz: Hükümdar, mezarına bütün eviyle birlikte; yani, muhafızları, savaş arabası, seyisi, öküzü ve dokuz karısıyla gömülmüştü. Ayrıca ev eşyaları, altın ve bakır silahtar, gümüş ve altın sofra takımları, çeşitli mücevherler, altın kabzalı hançerler, iğneler, taçlar, küpeler, altından ve gümüşten yapılmış taşlı araba süsleri de mezara konmuştu.

Milattan otuz yüzyıl önce kilolarla altının kullanıldığı ve bu çeşit bir 'israfa kuyumcuların sanat ve dehalarını dökmüş olmaları, insanlık tarihinin başlangıç çağının saltanatı üzerine yeterli bilgi vermektedir. Gerçekten de bu, Tutmosis, II. Ramses, l. ve II. Sargon gibi büyük 'inşaatçı'ların göz kamaştırıcı saltanatlarına yaraşır bir dönem olmuştu.

Roma ve Atina'nın henüz birer kulübe topluluğu halin de bulunduğu sırada bu 'haşmetli' imparatorluklarda yüce uygarlıkların eserleri olan dev şehirler yer yer yükselmekteydi: Ege adalarında Knosos; Nil boyunda Teb; Fırat boyunda Babil; Dicle'de Ninova; İndüs üzerindeki olağanüstü şehir, Mohenjo-Daro... Dünyanın karanlığını boylu boyunca yaran parlak ışıklı bir yıldız dizişiydi sanki.

ÇELİK

İngiltere'de krallık emirnamelerince yasaklanmasına, Fransa'da Sorbonne'un şiddetle karşı çıkmasına rağmen, ormanlar tükendikçe taşkömürüyle ısınma yaygınlaşıyordu. Evlerden bir süre sonra fabrikalara da girmeye başladı.

Önce cam (1635), bira ve tuğla fabrikalarına girdi. Derken günün birinde, bir demir döküm fabrikası sahibi, "biz niye kullanmayalım?" diye düşündü. Bu kişi Dunley idi

Ne yazık ki, bu iş Dunley'in düşündüğü gibi kolay değildi. Yalnız odunkömürünün yerine taşkömürü kullanmakla demir elde edilemezdi. Önce demir cevherinin içindeki oksijeni yok etmek gerekiyordu. Odunkömürünün görevi maden cevherinden oksijeni alarak karbonikgaz yapmaktı; yani işlem sırasında odunkömürü ikili bir rol oynuyor, önce reaksiyona gerekli ısıyı sağlıyor, sonra da kimyasal madde olarak bu reaksiyona katılıyordu. Hatta demirin içinde eridiğinde üçüncü bir rol daha oynuyor, (yüzde 1,5'dan azsa) demiri "çelik", (yüzde 3 ya 5 olursa) "döküm" haline getiriyordu.

Yerine doğrudan taşkömürü koymak neden mümkün değildi? Çünkü taşkömürü, odunkömürü gibi hemen hemen tam karbon değil, tersine oldukça katışık bir maddeydi. Taşkömürü ısı verici olmakla birlikte kimyasal madde olarak reaksiyona katılamazdı. Katılabilmesi için taşkömürünün karbona çevrilmesi gerekliydi.

Dunley bunun da çözüm yolunu buldu:Taşkömürünü damıtarak kok haline getirmek mümkündü. Yalnız bu buluşu, uygulama alanına sokan başka bir İngiliz aile, Darbyler oldu.

Abraham Darby (1677-1717), Dudley gibi Birmingham dolaylarında doğmuştu. Bu bölgenin hem demir, hem de madenkömürü bölgesi oluşuna dikkat etti. Dindar adam, bu durumun Tanrı buyruğu olduğuna, izlemesi gerekli yolu kendisine O'nun gösterdiğine inanıyordu. Böylece Dunley'in yarıda bırakmış olduğu işi ele aldı. İskoçya'ya giderek Coalbrookdale'de bir fabrika kurdu ve taşkömürünü kok haline getirmek için deneyler yapmaya başladı. 1709'da bu işi başarmasına başardı, ama ölümü buluşunu sanayileştirmesini engelledi.

Odun kullanmadan demiri ilk elde eden oğlu II. Abraham Darby oldu (1735). Olay İngiltere'de büyük yankılar yarattı.

Ülkede taşkömürü boldu, bu da artık istenildiği kadar kok kömürü elde edilebilir, yüksek fırınlara yutabildikleri kadar yakıt verilebilir demekti. Böylece demir ve çelik üretimi arttıkça artacaktı. Uygarlığın ve İngiltere'nin kaderini değiştirecek olan "çelik çağı" açılmıştı. Baba Abraham'ın, ölümünde yılda 600 ton döküm veren fabrikalarının, üretimi oğlunun ölümünde 10.000 tona, torunu zamanında da 15.000 tona yükseldi.

Ne var ki, büyük çapta üretim, Britanya sanayii için genellikle yapılan yermelerin bir kere daha tekrarlanmasına yol açtı. Üretim miktar bakımından yeterliydi, ama kalitesizdi. Elde edilen demir, maden köpüğüyle doluydu, dolayısıyla iyi kalite demire ihtiyaç görüldüğünde, oduna sadık kalan İsveç ya da Rusya'ya başvurmak gerekiyordu.

Bu durum, özellikle sert çeliğe ihtiyaçları olan araç imalatçılarını zor duruma sokmuştu. Gerçi Birtnguccio'dan (1540) beri 'semantasyon' yoluyla, yani demire karbon içirerek çelik yapmayı biliyorlardı, ama semantasyonlu çelik bile, sözgelişi saat zemberekleri imali gibi ince işler için, elverişsizdi

Sonunda sabrı tükenen bir saatçi kollan sıvadı ve istenen nitelikte çeliği imal etmeyi başardı. Bu, Doncasterli Benjamin Huntsman adında bir İngilizdi (1704-1776). Yüksek ısıya dayanabilecek büyük bir kabın içinde semantasyonlu çeliği koyup erittikten sonra, buna su verdi. Böyle eritilip su verilen çelik en ince araçları bile imal etmeye yarayacak nitelikteydi. Şunu da hemen ekleyelim; bu yolla ancak az miktarda çelik imal edebilirdi, dolayısıyla fiyatı da pahalı oluyordu. Çeliği tonlarla ısmarlamakta olan mühendisler, buluştan bu yüzden hoşnut kalmamışlardı. Sheffield Çelik Fabrikası da, Huntsman çeliğini çok sert olduğundan kullanmak istemedi.

Madem çelikte önemli olan karbon oranıydı; bu iki şekilde, ya karbonsuz demire karbon vermek ya da fazlasıyla karbonlu dökümden karbon çıkartmakla elde edilebilirdi. O güne kadar birinci yoldan gidilmişti. Ama bu yol ihtiyaçları karşılayacak miktarda çelik vermediğinden, ötekini denemek yerinde olacaktı. İngiliz madencisi Henry Cort da böyle düşünmüştü her halde. Dökümü karbonundan arıtmak için oksitleyici bir maddeyle karıştırıp kor haline gelinceye kadar ısıttı. Fazla karbonu böylece giderdiğinde, elde ettiği maddeyi, köpüğünden arıtmak için dövmekten başka iş kalmıyordu.

Cort'un fırınına "Uzun alevli fırın" ve kullandığı yönteme de "puddlage" (dökme demiri ocakta tavlama) adı verilir. Bu buluş sayesinde sanayiye yetecek miktarda iyi kalite çelik elde edilebiliyor; dolayısıyla Rusya ve İsveç'in tekeli kaldırılıyordu. Böylece İngiltere çelik piyasasına hâkim oldu. Ve gerek madeni, gerekse üretim yöntemiyle dünyaya kendini kabul ettirdi. İngilizler madencilikte dünyada rakipsiz duruma yükselmişlerdi.

Birçok ülkeler, İngiliz mühendislerini davet ediyor, kendi ülkelerinde demir fabrikaları kurmakla görevlendiriyorlardı. Madeni araç imali konusunda İngiliz mühendislerine baş vurulmaya başlandı. Fransa ve Almanya'da ilk yüksek fırını İngilizler kurdu. (1787). Buhar kazanlarını 'monte' edenler de onlar olduklarına göre, o dönemde İngilizler dünya sanayisini ellerinde bulunduruyorlardı, diyebiliriz.

ÇELİK ADI BİR MADEN HALİNE GELİYOR

Çeliğin her bakımdan demire üstün olduğunu herkes takdir etmekteydi. Ama geçen yüzyılın ortalarında lüks bir maden durumundaydı. Sözgelişi, 1864'te Fransa, 1.213.000 ton dökme demir, 792.000 ton demir ve yalnız 41.000 ton çelik üretmekteydi. Bununla da sadece silah, bıçak, testere ve benzeri gereçler imal edilmekteydi. Semantasyon ya da eritme yoluyla olsun, imali güç ve pahalı oluyordu. Öyle ki, bu durumda çelik bir köprü inşa etmek söz konusu olamazdı.

O sıralarda Londra'da Henry Bessemer (1813-1898) adlı bir mucit yaşamaktaydı. Son derece verimli bir zekâya sahip olan bu kişi, çok çeşitli konularda başarılı çalışmalar yapmıştı; optik camlar ve kadife üzerinde basma konusunda yenilikler getirmiş, bir yazı makinesi, bir tulumba, kanatçıkları olan bir obüs imal ve dalgalardan sarsılmayan bir gemi inşa etmişti.

Bu son icadının III. Napolyon tarafından reddedilmesi üzerine (1855) atölyesine döndü ve başka araştırmalar yapmaya koyuldu. Madenciliği geliştirmeye karar verdi ve dökme demirin erimekte olduğu fırının başına geçip incelemelere girişti. Böylece, günün birinde sıvı halindeki dökme demirin üzerine esen soğuk havanın onu soğutacağı yerde ısıyı yükselttiğini hayretle gördü. Servetinin büyük bir bölümünü yutan bir dizi denemelerden sonra, bu oluşumun nedenini bulabildi. Hava akımı demirde bulunan karbon, silisyum ve manganez gibi öğeleri yakmaktaydı ve ısıyı yükselten işte bunların yanmasıydı. Kısacası dökme demirin karbonunu yakarak Huntsman yönteminden daha kolay ve daha fazla miktarda çelik elde edebilmekteydi.

Bessemer yöntemi yalındı: Eritilmiş dökme demiri soğuk bir toprak kaba dökmek ve üzerinden bir hava akımı geçirmek yeterliydi. Sanayi, buluşu hemen benimsedi, ama mucitin dediği kadar kolaylıkla uygulanamadığını fark eder etmez de

aynı çabuklukla itti. Bunun üzerine Bessemer kendisi bir çelik işletmesi kurdu ve Sheffield'deki fabrikasında bu yöntemi geliştirmek için ciddi çalışmalar yapmaya koyuldu. İki yılına ve servetinin kalan bölümüne mal oldu, ama sır bulunmuştu. Kulakları sağır edici horultular ve fışkıran alevler içinde çelik kusan, içi kil döşenmiş yirmi ton kapasiteli dev imbiklerle uygulanan konvertisör tekniği doğmuştu.

Unutmamak gerekir ki 1851'de İngiltere yalnızca 60.000 ton çelik imal etmişti. Bunu, 1880'de 1.320.000 tona 1890'da 3.637.000 tona (%45'i Bessemer yöntemiyle) yükseltti. Aynı yıl Fransa'da üretim 389.000 tona (%26 Bessemer); Almanya'da 1.613.000 tona (%16 Bessemer) ve A.B.D.'de 4.346.000 tona (%88 Bessemer) ulaştı.

Almanyada'ki %16 ile A.B.D.'deki %88 oranı arasındaki büyük fark nedeniyle okurlarımın aklına şu iki soru takılmıştır: 1) Neden bütün ülkeler üretimlerinin tamamı için Bessemer yöntemini benimsememişlerdi? 2) Neden çoğu yerde sadece yardımcı yöntem durumunda kalmaktaydı?

Bu, Bessemer yönteminin bile kendine göre sakıncalarının bulunmasından ileri geliyordu. Çelik büyük bir hızla elde ediliyordu; öyle ki, başındaki işçi madeni tam olarak hangi anda akıtması gerektiğini iyice belirleyemiyordu. Bir dakika önce akıtsa, dökme demirin çeliğe dönüşümü tam olmuyor, bir dakika sonra, demirin kendisi yanıyordu. Yani işlem süresinin çok kısa olması sonucu oluşumu ve madenin niteliğini kontrol etmek imkânsızdı. Öyle ki bu yöntemle mükemmel ve her işe elverişli bir maden elde edilemiyordu: Elde edilen, çelik raylar için uygun, buna karşılık araç imali için yetersizdi. Bu nedenle teknisyenler daha yavaş bir yöntem bulunamaz mı diye düşünmeye başladılar.

MODERN ÇELİĞİN SIRRINI BULAN ADAM

İlk çözüm şeklini getirenler Siemens kardeşler oldular. Siemensler yetenekli bir mühendis ailesiydi. Bunlardan Ernst'ten (1816-1892) telgraf konusunda söz etmiştik; ilerde de dinamonun icadındaki katkısına tanık olacağız. William (1823-1853) İngiltere'de bir su altı kablosu fabrikası kurmuştu. Onlara kardeşleri Frederich (1826-1904) ve elektronikte başarılı çalışmalar yapmış olan Ernst'in oğlu Wilhelm'i (1855-1919) de katmamız gerekir.

Fırını icat eden Frederich oldu ve bunu William uygulamaya koydu. Bu fırındaki gaz ocakları gazı ve havayı yakıyor, bu işlem ısıyı artırdığından hem yanar maddeden tasarruf ediliyor, hem de verim yükseliyordu. Bu yöntem daha önceleri cam sanayisinde kullanılmış ve yüksek fırınlar da uygulanmıştı. Fransız mühendisi Louis Le Chatelier (1815-1873) de dökme demiri eritmede kullanmayı denedi.

İlke iyiydi ama uygulaması güçlükler çıkarttı: Le Chatelier fırının içini döşemeye elverişli sertlikte tuğla bulamadı. Bununla birlikte girişimi küçük bir fırının sahibi olan Pierre-Emile Martin'in (1824-1915) dikkatini çekti. Maden mühendisi olan Martin, Bessemer'den farklı olarak birçok şeylere birden el atmaktansa, bir tek konunun üstüne eğilip onu derinliğine incelemekten hoşlanan bir insandı.

Babasının Fourchambault'daki atölyesinde yaptığı staj ve Sireuil (Charante) fabrikalarındaki tecrübeleri, Bessemer yönteminin kusurlarını meydana çıkarmasına yol açtı ve bunları nasıl giderebileceğini kendi kendine sordu.

Siemenslerin ve Le Chatelier'nin girişimleri ona yol gösterdi: Bütün iş, fırınların içini kaplamaya yarayacak uygun sertlikte bir madde bulmaktı. Martin, 1863'te Le Chatelier ve William Siemens'le bağlantı kurdu ve onların öğütleri uyarınca bir fırın inşa ettirdi. Ertesi yılın nisanında ilk çelik akmaya başladı. Bunda dökme demir, silisli tuğlalarla döşenmiş bir tabanın üzerine konmakta ve gaz ocaklarıyla ısıtılmaktaydı. Bu şekilde, karbondan arıtma işlemi ağırlaştırılmış olduğundan dilenen andan durdurmak mümkün oluyor, böylece istenen kıvamda çelik elde edilebiliyordu.

Beratı 1865'te alınan Martin yöntemlerinin pratik bir şekilde uygulanabilmesi için mucitin daha uzun zaman incelemeler yapması gerekti. Martin çalışmalarının ürünlerini alabilmiş ve başarısını gölgeleyen hiç bir sıkıntıyla karşılaşmamıştır Gerçekten, birçok madenciler Martin yönteminin üstünlüğünü takdir etmişler ve hemen uygulamaya koymuşlardı, ilk Sireuil'de uygulanan bu teknik hızla yayıldı ve fırınların kapasiteleri gittikçe artarak 200 tona vardı. Buna paralel olarak nitelik ve çeşitlerde de gelişme görüldü, öyle ki, bir süre sonra birçok ülkelerde Martin yöntemi Bessemer'i büsbütün ortadan kaldırdı.

1915'te Martin öldüğünde, Martin çeliği Fransa'da üretimin %34'ünü Almanya'da %35'ini, Amerika'da %66'sını, İngiltere'de %71'ini kapsamaktaydı. Bessemer'in ülkesi İngiltere'de bile 1948'de üretilen 12.987.000 ton çeliğin 14.877.000 tonu Martin yöntemiyle elde edilmekteydi.

CHAPPE TELGRAFI

Bu telgraf şekli en eski zamandan beri uygulanmaktaydı. Agamemnon, Truva'nın alındığını Klitemnesr'e böyle duyurmuştu. Bu yöntem daha sonra Doğabilimci Enee, Polybe, Çinliler ve Kartacalılar tarafından geliştirildi. Sonunculardan da Romalılara geçmiş ve çok kullanılmıştı. Hatta işi Clyde'den Tyne'e uzanan surların içine tunçtan akustik borular yerleştirmeye, yani gerçek bir telefon hattı kurmaya kadar vardırmışlar ve haberleri ya da emirleri böylece 1.000 metreden 1.000 metreye hızla duyurabilmişlerdi.

Barbar istilâlarıyla birlikte bütün bu hünerli tekniklerin sonu geldi. Ve yeni kıpırdamalar ancak XVII. yüzyılda başladı. Bunlardan iHc kayda değer girişim Richer ve Gaspard Schott'unki oldu. (XVI. yüzyılın sonu.) Bunu 1684'de daha önce sözünü ettiğimiz ekşi huylu büyük bilgin Hook'un yöntemi izledi. Yüksek bir yerden alfabenin her bir harfine karşılığı olan işaretlerin verilmesinden ibaretti bu. Dört yıl sonra da Amonson tarafından geliştirildi. Ancak, genel bir gösteriye kalkışıldığında müthiş bir fiyasko oldu. Gösteri Veliahttın ve saray mensuplarının huzurunda yapılacaktı. Şımarık saray züppeleri, üstelik sağır olan zavallı bilim adamını öyle bir alaya aldılar ki adamcağız kurduğu tesisatı işletemedi.

Deneyler üç çeyrek yüzyıl sonra yeniden başladı. Cenevreli fizikçi Lesage (1774), Latin Belâgati Profesörü Fransız Dupuis (1778), Bastille'e atılan Polemist Linguet (1780). Deniz Subayı Courrejolles (1783), Parisli fizikçi Lomonde (1787), Alman Profesör Bergstrasse (aynı yıl), İspanyol Mühendis Bettancourt (1788), Fransız Abbe Chappe (1790), Alman Reiser (1794). İspanyol Salva (1797) harıl harıl deneylere giriştiler. Sonunda çok sayıda ve çeşitli yollar gösterdiler.

Ne var ki, bunlardan çoğu fanteziden öteye gidebilecek türden değildi. Sözgelişi Bergstrasse, işaretlerin top atılarak verilmesini önermekteydi. Bazıları ise, Lesage'ınki gibi zamansızdı, çünkü gerçek bir elektrikli telgraf niteliğinde ve ayrıntılarda bazı gelişmeler gerçekleştirilince, enikonu yararlanılabilecek olgunluktaydı.

Claude Chappe (1763 . 1805), kardeşlerinden uzak kaldığı tatillerini onlarla haberleşebilmek için bir araç bulma çalışmalarıyla geçirirdi. Bu bir merkezin çevresinde dönen bir cetveldi, iki ucunda birer cetvel daha vardı. Bu araçla işaretler vermekte ve bu işaretler de önceden tespit edilmiş bir kod uyarınca yorumlanmaktaydı. Uğraşı Chappe'ı iyiden iyiye sarmış olacak ki, yaşını aldıktan sonra kendini bütünüyle bu konudaki çalışmalara verdi, işe akustik, sonra da elektrik telgrafla başladıysa da, bunlar tatmin edici sonuçlar vermedi. Buna karşılık kardeşleriyle giriştiği deneylerden hoşnut kaldı. Haklıydı ki, icadını sunduğu Convention Meclisi, deneyin resmen tekrarlanmasını istedi.

Bu deney için bir vakitlerin oyuncağı büyütüldü. Ufak cetvel, bir direğin ucunda dönen 4 metrelik bir çubuk olmuştu. İki ucundan sarkan bir metre uzunluğundaki dal çeşitli şekiller alabilecek gibi konmuştu. Ve bu araç bütünüyle bir kulenin tepesine yerleştirildi. Alt katta duran bir memur, sicimleri çekerek araca önceden düzenlenmiş kolun tespit ettiği şekilleri verebilmekteydi. Araç, 12 Temmuz 1793'te Convention'un komiserlerinin huzurunda işletildi. 35 km. uzağa yerleştirilmiş öteki istasyona gidecek mesajı ve cevabı 11 dakika içinde gönderip aldı. Öylesine beğenildi ki, Chappe "telgrafçı-mühendis" olarak atandı ve ilk hamlede hemen iki istasyon kuruldu.

Bu ilk hattın açılışı (Lille-Paris) Fransa'nın ve teknikler tarihinin onurlu sayfalarından biridir. 1 Eylül 1794'te Convention'un oturumu açılır açılmaz Carnot kürsüye fırlamış ve "Vatandaşlar!" diye haykırmıştı. "Paris-Lille arasında kurmuş olduğumuz telgrafla az önce aldığımız habere göre Conde, Cumhuriyete bu sabah saat 6'da teslim olmuştur." Bunun üzerine Meclis, Kuzey Ordularına bir kutlama ve teşekkür telgrafı gönderilmesine karar verdi. Ve bu ikinci mesajın karşılığı geldiğinde meclis hâlâ toplantı halindeydi.

1800 yılında Fransa'da üç telgraf hattı vardı: Paris-Lille, Paris-Strasbourg, Paris-Brest. Bunların toplam uzunluğu 1.253 km. etmekteydi. Bu sayı 1844'te 5.000'e çıktı. Ulaşımdaki bu hız insanı şaşırtmayacak gibi değil: Paris-Lille arası (aradan 22 istasyon geçerek) 2 dakika, Strasbourg-Paris 6.30 dakika, Lyon ya da Brest'ten Paris 8 dakika, Toulon-Paris 20 dakika.

Bu sistem yabancı ülkelerde de uygulanmış, ancak görüş uzaklığı ve havanın saydamlığı gibi şartlar göz önünde tutularak az çok değişiklikler yapılmıştı. İtalya, Mısır ve İspanya olduğu gibi uygulamaktaydı. bunları. Almanya ve Rusya da değişiklik yapmadan izledi. İngiltere kolların yerine tahta kanatlar taktı. Öteki ülkeler ise telgrafı anlayıncaya ve "Chappe" uygulayayım deyinceye kadar bu sistemin modası geçmeye başladı. Fransa 1844'te Cezayir'de ilk hattı inşa ederken ülkesinde elektrikli telgraf kurulmaya başlanmıştı. Bu sistem çarçabuk yayılıp ötekini silecekti.

BUMERANG

Bumerang, günümüzde en çok Avustralya yerlileri tarafından kullanılan ağaçtan yapılmış eski bir silahtır. Hayvan avcılığı, spor ve eğlence amaçlı kullanılır.

Bumerang, sert ağaçtan yontularak yapılan kıvrık bir atış çubuğudur. Boyu 15 cm'den 120 cm'ye kadar değişir. En bilinen V biçimli ve iki kollu bumerangtır. Havaya atılan V biçimli bir bumerang havada bir halka çizdikten sonra tekrar onu atan kişiye döner. Geriye dönmeyen bumeranglar da vardır. Geri dönmeyen bumerangları eski Mısırlılar da kullanmışlardır.

Geriye dönen bumeranglar, hafif, ince ve genellikle 75 cm'den daha kısa boydadır. İki kolu eşit ya da ayrı uzunlukta ve düze yakın ya da kıvrık biçimli olabilir. Kollar arasındaki açı genellikle 120 derecedir. Bumerangın bir kenarı yuvarlak, diğer kenarının yassı olması için ağaç büyük özenle yontulur.

Bumerangın geriye dönmesi için özel bir biçimde atılması gerekir. Bumerang, yuvarlak kenarı içe, V ucu da dışa bakacak şekilde sağ elde ve omuz arkasında tutulur. Birkaç adım koşularak fırlatılır. Bumerang düzgün atılabilirse bir kanguruyu öldürebilir. Tavşan ya da kuş gibi küçük bir hayvanı ise ikiye biçebilir.

BUHARLI MAKİNE

Boulton ve Watt Şirketi 1786'da "çift etkili" makineyi piyasaya sürdü. Elli beygirgücündeki bu makine bir un fabrikasına satıldı. Bunu iplik, dokuma ve demir fabrikaları, maden ocakları izledi. Watt'tan önce bile 600 işçi çalıştıran Boulton fabrikaları alabildiğine büyüdü. Bütün dünyadan gelen vinç, sonda, un fabrikaları, iplik ve dokuma fabrikaları, darphane, Stanhope presleri, bira fabrikaları vb. için buharlı makine taleplerini karşılamaya koyuldu. Böylece 1775 ile 1800 yılları arasında 325 makine imal etti. A. B. D. ilk makineyi 1781'de satın almıştı; Almanya'da ilk defa 1785'te Fransa'da da 1778'de işlemeye başladı.

O yıl Jacgues-Constantin Perier (1742-1818), Seine sularını yükseltmek amacıyla Chaillot'ya (Paris) ilk ateşli tulumbayı yerleştirdi. O tarihe kadar çeşme suları, artık enikonu eskimiş olan hidrolik makineler aracılığıyla yakın ırmaklardan su arklarıyla getirilmekteydi. 1778'de Perier, Birmingham'a giderek Boulton firmasına iki makine ısmarladı ve bunları Debilly rıhtımına monte etti. 8 Ağustos 1781'de şaşkın bir kalabalığın önünde işlemeye başlayan makineler, Seine'den suları alıyor, Chaillot sırtlarında inşa edilmiş olan her biri 4342 hektolitrelik depolara akıtıyordu. Bu yenilik büyük sükse yaptı. Yirmi yıl içinde Fransa'da (12'si Anzin madenlerinde olmak üzere) 500 tulumba işletmeye kondu. Almanya'da on kadar makineye karşılık İngiltere'de 5 000 tane işlemekteydi.

Watt'ın makinesinin, Newcomen'inkinden üstünlüğü, ne daha güçlü ne de daha kullanışlı oluşuydu. Asıl önem verilen nokta, iki kat daha az yakıt harcamasıydı. Boulton da, makinesini tanıtırken, özellikle bu avantajından yararlanmıştı. Boulton önce para istemeden makineyi müşteriye veriyor, monte edilmesini ve bakımını üstüne alıyordu. Sonra da müşterilerinden borçlarını, kömürden edecekleri tasarrufun karşılığı paranın üçte birini vermek yoluyla ödemelerini istiyordu.

Bütün dünyaca benimsenen Watt'ın buharlı makinesini geliştirmek için binlerce mühendis işe koyulmuştu. İlk geliştirmeyi Watt'ın kendisine borçluyuz. Silindirden fışkıran ve 'kondansör'e giden buharı görmüş böyle bir gücün boşa harcandığına acıyarak bunu kullanmayı aklına koymuştu. 1782' de piston henüz yarı yoldayken buharın gelmesini önledi. Böylece buhar ve kömürden önemli miktarda iktisat edilmiş oluyordu. 1804'te İngiliz Arthur Woolf'un (1766-1837), buharı iki aşamada çalıştırmayı gerçekleştirmesiyle makine daha da iktisatlı çalışmaya başladı. Birinci aşama, 4 atmosferlik bir yüksek basınç silindirinde; ikincisi de, alçak basınçlı daha büyük bir silindirde meydana gelmekteydi.

"Çift etkili" makinenin icadından sonra yapılan en önemli gelişme, Oliver Evens adında (1755-1819) Philadelpialı araba yapımcısının çabalarıyla gerçekleşti. Newcomen, Watt ve Woolf gibi Evens de kendini Denis Papin'in düşlerine kaptırmıştı. Ekmek parası kazanmak için bir yandan araba, dokuma tezgâhı ve değirmen yapmakta, öte yandan da Jonathan Hornblower'in (1725-1812) Amerikalılara 1750'de sunmuş olduğu İngiliz yapısı ateşli tulumbayı geliştirme imkânları araştırmaktaydı. Çalışmalarını sürdürmek için tekniğe değil de, bilime baş vurması oldukça ilginçtir.

Black'in çalışmalarına dayanan Watt, suyun 1 dereceden 100 dereceye getirilmesi için 100 kaloriye, buharlaştırılması için 537 kaloriye ihtiyaç olduğunu bulmuştu. Evens, 100 dereceden 200 dereceye çıkarmak için de azıcık daha ısıtmanın (30 kalori) yeterli olduğunu gözlemledi. Bu durumda az bir masraf eklenmesiyle 15 kat fazla basınç elde edebilecekti. Evens'in yazdığı gibi, "deneyler, 1.5 atmosferlik bir basınç elde etmek için 4 ölçek kömürün yetmesine karşılık, 2 atmosfer için 5 ölçek, 16 atmosfer için de 8 ölçeğin yeterli olduğunu kanıtlamaktadır" Evens, Watt'ın makinesinin silindirinde, yüksek basıncın alçak basınçtan daha fazla iş gördüğünü bildiğinden 8 atmosferlik buharla işleyen bir "çift etkili" makinenin ihtira beratını aldı (1797).

Yüksek basınç kesin bir avantaja sahipti. Ancak, basınca dayanabilecek güçte kazanlar imal edilinceye kadar öne sürdüğü yenilikler kuramsal olmaktan ileri gidemezlerdi. 1800 yıllarında maden işletmeciliği henüz emekleme çağındaydı. Perçin çivisiyle tutturma tekniği yetersiz olduğundan kazanların su geçirmezliği güvenilir durumda değildi. Neyse ki, o günlerde de sanayi dalları günümüzde olduğu gibi dayanışmalı çalışıyordu. Buhar makinesi, demir ve demir-dökme fabrikalarına itici güç sağlıyor, buna karşılık kendi gelişmesi için gerekli imkânları alıyordu. Wilkinson'un delgi makinesi sayesinde silindirlerin içi istendiği gibi oyulabilmekteydi; öte yandan araç-makineler işlemeye başlamış ve kimyacılar madenlerin direncini artırma çabalarına hız vermişlerdi.


ENERJİNİN FETHİNDE İLK AŞAMA: BUHAR

Buhar, hidrolik çark ve yel değirmeninin tam tersine coğrafi ve meteorolojik şartlara bütünüyle yabancı, güçlü ve düzenli bir enerji kaynağıdır. Mekanik uygarlığın gelişmesini buharın icadına bağlamak bu bakımdan yerinde bir görüştür. Bununla birlikte, Watt'ın makinesi ancak 1802'den sonra bütün sanayi kollarında kullanılabilmişti. Dolayısıyla bütün Sanayi Devrimi'nin buhar makinesiyle başladığını söylemek hatalıdır. Sanayi Devrimi çeşitli ülkelerde, değişik tarihlerde başladı. Watt'ın ilk araştırmalarını yaptığı tarihte, Fransa'da yeni yeni başlamış olmasına karşılık, İngiltere'de bu tüm hızıyla gelişmekteydi. Bu bakımdan buharlı makinenin, Sanayi Devrimi'nin sebebinden çok önemli bir sonucu olduğunu söylemek daha uygundur. Gerçekten sanayicileri, özellikle taşkömürü üreticilerini buhara köle olmaya sürükleyen etken geniş çapta ticaretin gerekleri olmuştu.

Yeni itici gücün getirdiği köklü değişikliğin kapsamını ölçebilmek için, o güne kadar enerji kaynağının akarsular, yel ve hayvansal güç olduğunu hatırlamak yeter. Bir insan toplumunun uygarlık düzeyinin kesin ölçüsü, sahip olduğu itici güçlerinin miktarlarıyla doğru orantılıdır. Toplum bilimsel yönden ne derece yükselebilmişse, tabiatın kendisine sunduğu enerji kaynaklarından o derece yararlanabilir, onları kendine hizmet ettirebilir. Topraktan çıkardığı bir kara taşı makinelerinde yakmaya yetenekli bir toplum, elbette hayvan ya da köleleri çalıştırarak gelişmeye çalışan bir toplumdan daha ileri bir düzeydedir.

Daha önceki sayfalarda bir ülkenin zenginliğinin altın stoklarından çok, sanayi kuruluşları ve maden kaynaklarıyla ölçülebileceğini söylemiştik. Bu görüşü şimdi daha belirgin hale sokup şu önermeyi ileri sürebiliriz: "Bir ulusun zenginliğinin kilowattsaat'le (kilowattsaat yalnız bir elektrik birimi değildir. Bir buhar makinesinin, bir yel değirmeninin, hatta bir hayvanın ya da boksör'ün enerjisi de kilowattsaatle ölçülebilir.) ölçülmesi gerekir."

Fransa'yı örnek alırsak; 1952'de ülkenin kömür, petrol, hayvan vb. gibi enerji üretimi kaynakları yılda 3 milyar kilowattsaatlik bir enerji sağlamaktadır. Bu nüfusa bölündüğünde 2.620 kilowattsaat eder. Demek ki, her Fransıza ortalama olarak 2.620 kilowattsaatlik bir enerji düşmektedir. Aynı yılda her Amerikalıya 7.790 kilowattsaat; her İngilize 4.730; her İsveçliye 4.080 kilowattsaatlik enerji düşmektedir. Bu sayılar bu ülkelerin teknik düzeylerini göstermektedir.

1790'da, yeni buharlı makinenin uygarlığı fethe çıktığı yıllarda, en uygar ülkede kişi başına ancak 34 kilowattsaatlik bir enerji düşüyordu. Bunun çoğunu da beygir ve öteki çekim hayvanları sağlamaktaydı. O dönemdeki sanayinin en mükemmel enerji kaynağı olan hidrolik çarklar yalnız fabrikalarda kullanılıyordu. Bunlar buğday, ceviz ve zeytin öğütmekten başka demir eritme körüklerini, dokuma tokmaklarını, presleri ve tezgâhları işletmekteydi. Bugün 'fabrika' dediğimiz tesislere o gün "değirmen" denilmesinin nedeni de buydu. Bugün bile birçok köylerde "kâğıt değirmenlerine ya da "yağ değirmenlerine rastlamaktayız.

YATMA ZAMANI

GEREKLİ OLANLAR: Oyuncak hayvan Oyuncağı içine alacak büyüklükte karton kutu Eski havlu, eski kumaş parçaları, pamuk Çocuğunuz uy...